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A fast-converging mathematical method for calculation of convolution square roots of one-dimensional 
functions has been developed. Application to one-dimensional periodic structure projections as well as to non- 
periodic structures is possible. Computer calculations of some examples are given. 
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Introduction 

The well known phase problem of diffraction theory to 
be solved usually in reciprocal space has its equivalent 
in computing the convolution square root (CSR) of the 
Patterson function in real space. 

From a known structure the Patterson function or 
the distance statistic can be calculated through the 
convolution square (CS). This calculation works 
straightforwardly; the inversion CSR has been realized 
only in special cases (Hosemann & Bagchi, 1962), 
although it would be desirable for single-crystal 
structure analysis as well as for the analysis of non- 
periodic structures to have such a calculation method. 

The calculation of the three-dimensional CSR is 
possible in principle, if sufficient computer time and 
storage are available, but has not been carried out yet. 

If one tries to compute the one-dimensional CSR of 
Patterson projections a unique solution cannot be 
expected. The number of solutions depends on the 
number of axis reflections used. Independent of the sign 
or phase selection one obtains the same Patterson 
function. In reality the CSR can only be carried out for 
those projections of which a significant approximation 
is known. It can be shown (Hosemann & Bagchi, 1962) 
that a unique solution for the CSR of pseudo-periodic 
or non-periodic structures requires a fast diminution of 
the electron density to zero with increasing x values. 

Assuming a first approximation of the Pi is known, 
the equation system (2) may be written: 

C S j =  ~ PiP*+J-, J= 1,.. .  m (=n), (3) 
i =1  

where p~ denote the unknown structure and pz+j_* ~ the 
first approximation. The CSj are the Patterson points of 
the experiment. Regarding (3) as a system of linear 
equations of order n for the Pt, the inversion of the 
matrix (p*) leads to a unique solution in general, which 
can be called the second approximation. The input of 
the second approximation into (3) would not be very 
reasonable since one further step would result in the 
previous values Pi. 

Taking the average 

lffi* Pi + P* 
2 (4) 

as the second approximation, repetition of the pro- 
cedure described above leads to a very-fast-converging 
refinement, which is almost independent of the first 
approximation if there is a unique solution of the 
problem. Otherwise, if different solutions are possible, 
the first approximation has to be close to the required 
solution. 

Examples 

Mathematical description of the method 

The CS of a structure p(x) is defined by 

+ G o  

CS(x) = Z P ( y ) P ( y -  x)dVy; (1) 
--GO 

x, y are vectors and d Vy the volume element in real 
space. If the structure is assumed to be given one- 
dimensionally, point by point, for example in the 
storage of a computer, (1) can be represented by the 
following expression: 

CSj= ~ PzPi+j-1 J= 1,...m. (2) 
i = l  

This expression differs for periodic and non-periodic 
structures. In the periodic case the Patterson function 
has the same period as the structure itself. Therefore, 
only points of one unit cell have to be taken (m = n). 
For finite non-period structures we have m = 2n. 
Because of the CS centrosymmetry only half of the CS 
points are required. The known methods (Hosemann & 
Bagchi, 1962) start at one end of the distribution 
function CS in order to solve (2) for the Pi; the 
accuracy of those methods depends significantly on 
that of the starting points CS ~, CS 2, . . .  The method to 
be described here works totally differently. 

The method described to calculate the CSR of a one- 
dimensional function has been tested against several 
examples of which the results of three calculations will 
be described here. In all three cases the x 1 projection of 
a 4-hydroxyindole derivative (Hecht & Luger, 1974; 

P(x) 

\ 

Fig. 1. Graphical representation of example (a). First approxi- 
mation obtained by neglect of a medium-sized peak. 
Experimental density, x - -x - -×  refined approximation, 
o--e--o first approximation. 
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Fig. 2. Graphical representation of example (b). First approxi- 
mation obtained by cutting off one major and one medium-sized 
peak. Curves as in Fig. 1. 

I F', I1 I 

I i/t'Jt 1 It!lit f l l  I 
, 7 I r 
~ J ~ J 

Fig. 3. Graphical representation of example (c). First approxi- 
mation p,(x) obtained from 'unit' reflections. Refined and experi- 
mental distribution are identical within the graphical error. 
x - - x - - x  Refined approximation and experimental density, 
• - - •  1 •  first approximation. 

monoclinic, space group P21/c) and its Fourier trans- 
form, the F(h~O0) reflections, have been used as a test 
object. The different examples were obtained by a more 
or less relevant modification of the known density pro- 
jection p(xl) to be used as a first approximation p*(x~). 

(a) p*(x l) was obtained by neglecting one of the 
medium-sized peaks of p(x l) (Fig. 1). By a four-cycle 
refinement a good fit to the original p(xl) distribution 
was obtained. However, it should be noted that the 
minor discrepancies between refinement and experi- 
mental density could not be improved by additional 
refinement cycles. 

(b) p*(x~) was obtained by cutting off one of the 
major maxima and the medium maximum of case (a) 
(Fig. 2). The result of a four-cycle refinement is in 
principle equal to that of (a). 

(c) From the real F(h~O0) reflection series, 'unit' re- 
flections F~(h~O0) were obtained by taking the average 
of the F(h~O0) series for the magnitude of all F, 's:  

1 
IFn(h~O0)l = c = -  ~ IF(h~00)l, 

n hi 

where n denotes the number of reflections in the (hi00) 
series. The sign of Fn(h 100) was set equal to the sign of 
the corresponding F(h~O0) reflection, so that Fn(h~O0) 
is finally defined by 

F,(hj00) = c sign [F(hl00)]. 

The density projection p~(x~), calculated as the Fourier 
transform from the F~(h~O0) series, was then used as 
the first approximation of p(x l) (Fig. 3). As expected, 
p~(xl) differs totally from p(x~). A four-cycle CSR 
refinement results in a distribution which is, within the 
graphical error, indistinguishable from the experi- 
mental density p(x). 

In all the test examples, the CS of the refined 
densities fitted exactly the experimental Patterson 
function. 
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